MCB11H12 (M: Li, Na) dodecahydro-monocarba-closo-dodecaborate salt compounds are known to have stellar superionic Li+ and Na+ conductivities in their high-temperature disordered phases, making them potentially appealing electrolytes in all-solid-state batteries. Nonetheless, it is of keen interest to search for other related materials with similar conductivities while at the same time exhibiting even lower (more device-relevant) disordering temperatures, a key challenge for this class of materials. With this in mind, the unknown structural and dynamical properties of the heavier KCB11H12 congener were investigated in detail by X-ray powder diffraction, differential scanning calorimetry, neutron vibrational spectroscopy, nuclear magnetic resonance, quasielastic neutron scattering, and AC impedance measurements. This salt indeed undergoes an entropy-driven, reversible, order-disorder transformation and with a lower onset temperature (348 K upon heating and 340 K upon cooling) in comparison to the lighter LiCB11H12 and NaCB11H12 analogues. The K+ cations in both the low-T ordered monoclinic (P2(1)/c) and high-T disordered cubic (Fm (3) over barm) structures occupy octahedral interstices formed by CB11H12- anions. In the low-T structure, the anions orient themselves so as to avoid close proximity between their highly electropositive C-H vertices and the neighboring K+ cations. In the high-T structure, the anions are orientationally disordered, although to best avoid the K+ cations, the anions likely orient themselves so that their C-H axes are aligned in one of eight possible directions along the body diagonals of the cubic unit cell. Across the transition, anion reorientational jump rates change from 6.2 x 10(6) s(-1) in the low-T phase (332 K) to 2.6 x 10(10) s(-1) in the high-T phase (341 K). In tandem, K+ conductivity increases by about 30-fold across the transition, yielding a high-T phase value of 3.2 x 10(-4 )S cm(-1 )at 361 K. However, this is still about 1 to 2 orders of magnitude lower than that observed for LiCB(11)H(12 )and NaCB11H12, suggesting that the relatively larger K+ cation is much more sterically hindered than Li+ and Na+ from diffusing through the anion lattice via the network of smaller interstitial sites.
Ellen Fogh, Sofie Janas, Paola Caterina Forino
Paul Joseph Dyson, Farzaneh Fadaei Tirani, Mouna Hadiji
Bruce Normand, Ying Chen, Sheng Xu, Shuo Li, Xiaoyu Xu, Zeyu Wang, Weiqiang Yu