Differential cross sections for the charge transfer reaction between Ar(+)and CO have been measured using three-dimensional velocity map imaging in a crossed beam setup at the two relative collision energies 0.55 and 0.74 eV. We find dominant forward scattering with CO(+)product ions predominantly in the vibrational levels=6,7 of the electronic ground state X. This is indicative of a direct resonant mechanism for the two argon spin-orbit states. At both collision energies also an isotropic distribution with product ions exhibiting high internal excitation is observed. This is more pronounced at the higher collision energy, where the first electronically excited state Abecomes accessible. We conclude that the A-state is partially populated by the product ions at 0.74 eV collision energy and suggest that the isotropic distribution stems from the formation of a charge-transfer complex, in concurrence with previously performed studies. [GRAPHICS] .
Matthias Finger, Qian Wang, Yiming Li, Varun Sharma, Konstantin Androsov, Jan Steggemann, Xin Chen, Rakesh Chawla, Matteo Galli, Jian Wang, João Miguel das Neves Duarte, Tagir Aushev, Matthias Wolf, Yi Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Leonardo Cristella, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Davide Di Croce, Kun Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Anna Mascellani, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Muhammad Waqas, Hui Wang, Seungkyu Ha, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Valérie Scheurer, Muhammad Ansar Iqbal, Lukas Layer