Publication

Heuristic optimal control of a heat pump to increase the self-consumption of photovoltaic electricity

2018
Student project
Abstract

In a previous project [7], a heuristic control algorithm has been developed to find optimal management of the system including : Photovoltaic panels + Inverter + Grid Connection + House Loads + Heat Pump + Domestic Hot Water Tank + Domestic Hot Water demand on a household scale. The aim was to increase the photovoltaic selfconsumption while minimizing the operating expenditures. During this master thesis the optimal control algorithm has been completed and enhanced. Firstly, it has been extended to house heating purposes, then sensitivity to many new parameters has been studied : thermal characteristics of the building, environmental parameters and resiliency to uncertain forecast of weather and consumptions (hot water and electricity). Besides these additions, a new structure of control algorithm has been proposed. Based on the estimation of an indicator, it has proven to be more effective than the previous one, in terms of computation time and running costs. This new control method has been applied to the domestic hot water and the building space heating needs. So the relevance of this new algorithm has been verified by comparison with an already validated heuristic algorithm but also by comparison with MILP optimization. With a system management using this indicator based operation and an appropriate instantaneous control, the overall system shows very good resiliency to uncertain forecast.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.