Publication

The AKLT Model on a Hexagonal Chain is Gapped

Marius Christopher Lemm
2019
Journal paper
Abstract

In 1987, Affleck, Kennedy, Lieb, and Tasaki introduced the AKLT spin chain and proved that it has a spectral gap above the ground state. Their concurrent conjecture that the two-dimensional AKLT model on the hexagonal lattice is also gapped remains open. In this paper, we show that the AKLT Hamiltonian restricted to an arbitrarily long chain of hexagons is gapped. The argument is based on explicitly verifying a finite-size criterion which is tailor-made for the system at hand. We also discuss generalizations of the method to the full hexagonal lattice.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.