Publication

A Unifying Representer Theorem for Inverse Problems and Machine Learning

Michaël Unser
2020
Journal paper
Abstract

Regularization addresses the ill-posedness of the training problem in machine learning or the reconstruction of a signal from a limited number of measurements. The method is applicable whenever the problem is formulated as an optimization task. The standard strategy consists in augmenting the original cost functional by an energy that penalizes solutions with undesirable behavior. The effect of regularization is very well understood when the penalty involves a Hilbertian norm. Another popular configuration is the use of an l(1)-norm (or some variant thereof) that favors sparse solutions. In this paper, we propose a higher-level formulation of regularization within the context of Banach spaces. We present a general representer theorem that characterizes the solutions of a remarkably broad class of optimization problems. We then use our theorem to retrieve a number of known results in the literature such as the celebrated representer theorem of machine leaning for RKHS, Tikhonov regularization, representer theorems for sparsity promoting functionals, the recovery of spikes, as well as a few new ones.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.