Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Locally-resonant sonic metamaterials refer to synthetic acoustic matter composed of artificial acoustic “atoms”, generally passive, and of subwavelength sizes, that are capable of resonantly interacting with an external acoustic wave, and manipulate it in ...
Locally-resonant metamaterial crystals are artificial materials built from small spatially-local resonant inclusions arranged periodically at subwavelength scale. Unlike conventional continuous metamaterials, for which spatial dispersion originates mostly ...
The utilization of subwavelength resonators, such as small electric dipoles, plasmonic resonators, or objects made of materials with a high dielectric constant, has enabled the manipulation of electromagnetic fields down to the subwavelength regime with sy ...
Funneling acoustic waves through largely mismatched channels is of fundamental importance to tailor and transmit sound for a variety of applications. In electromagnetics, zero-permittivity metamaterials have been used to enhance the coupling of energy in a ...
This thesis deals with electromagnetic inspired acoustic metamaterials, enabling sound-matter interactions in different wave scenarios that include propagation, guided-waves, radiation, refraction, reflection and transmission. To this end, a particular emp ...
Nonlinear processes are important in many fields of photonics ranging from biomedical imaging to ultrashort pulse generation. Progress in nanophotonics and metamaterials has created a growing demand for nanoscale nonlinear optical components. However, it i ...
Initially proposed to achieve strong noise isolation levels beyond the mass-density law, acoustic metamaterials (AMMs) have now overturned the conventional views in all aspects of sound propagation and manipulation. In fact, within the last two decades, th ...
We investigate the invisibility via anomalous localized resonance of a general source in anisotropic media for electromagnetic waves. To this end, we first introduce the concept of doubly complementary media in the electromagnetic setting. These are media ...
The recently proposed concept of metamaterials has opened exciting venues to control wave-matter interactions in unprecedented ways. Here, we demonstrate the relevance of metamaterials for inducing acoustic birefringence, a phenomenon which has already fou ...
A concept for acoustic metamaterials consisting of a cellular medium with fluid-filled cells is fabricated and studied experimentally. In such a system, the fluid and solid structure explicitly interact, and elastic wave propagation is coupled to both phas ...