Anisotropy and shaping effects on the stability boundaries of infernal ideal MHD modes in tokamak hybrid plasmas
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This thesis delves into the potential of magnetic fusion energy, and in particular focuses on the stellarator concept. Stellarators use external coils to produce 3-dimensional (3D) magnetic fields that confine a thermonuclear plasma in a topologically toro ...
Tokamak devices aim to magnetically confine a hydrogen plasma at sufficiently high pressure to achieve net energy production from nuclear fusion of light isotopes. Predictive modeling and optimization is crucial for reliable operation of tokamak reactors, ...
Thermonuclear controlled fusion is a promising answer to the current energy and climate issues, providing a safe carbon-free source of energy which is virtually inexhaustible. In magnetic confinement thermonuclear fusion based on tokamak reactors, hydrogen ...
A two-fold analysis of electromagnetic core tokamak instabilities in the framework of the gyrokinetic theory is presented. First principle theoretical foundations of the gyrokinetic theory are used to explain and justify the numerical results obtained with ...
A new dispersion relation, and associated stability criteria, is derived for low-n external kink and infernal modes, and is applied to modelling the stability properties of quiescent H-mode like regimes. The analysis, performed in toroidal geometry with la ...
Controlled thermonuclear fusion is the main goal of plasma physics. At the Swiss Plasma Center, the Tokamak `a Configuration Variable (TCV) constitutes the main experiment on fusion research, where high temperature plasmas are confined by means of magneti ...
EPFL2017
Predictive modelling of plasma profiles is an essential part of ongoing research in tokamak plasmas, required for a successful realization of future fusion reactors. This thesis focuses on upgrading the RAPTOR code to extend the area of its applicability f ...
EPFL2018
,
Plasma filaments generated by turbulence in the scrape-off layer are sometimes observed in experi- ments and simulations to disconnect from the target plate in the vicinity of the X-point, resulting in a “quiescent zone” with reduced fluctuations, possibly ...
2020
, ,
JOREK is a massively parallel fully implicit non-linear extended magneto-hydrodynamic (MHD) code for realistic tokamak X-point plasmas. It has become a widely used versatile simulation code for studying large-scale plasma instabilities and their control an ...
IOP PUBLISHING LTD2021
Tokamaks and stellarators are the most promising reactor concepts using the magnetic confinement to contain the plasma fuel. Reactors capable of sustaining deuterium-tritium (D-T) fusion reactions requires the confinement of a very high temperature plasma ...