Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Overcoming the classical diffraction limit in optical microscopy is known to be achievable by a variety of far-field and near-field microscopy techniques. More recently, so-called micro-object-based optical super-resolution microscopy techniques have emerged. In this review, we provide an overview of the state-of-the-art of optical super-resolution imaging techniques. In the first section, far-field techniques are discussed, which can be considered as advanced classical optical microscopy methods that mostly operate with fluorescent samples. In the second section, near-field techniques are presented that achieve super-resolution by maintaining a close distance between a nanometric detection unit and the sample, such that evanescent waves can be captured and processed. Near-field methods typically involve some scanning procedure to be able to map a reasonably large area of the sample. In the third section, dielectricmicro-object-based techniques are discussed. These provide amore recent, practical and affordable alternative to the other super-resolution microscopies. Finally, we provide a comparison of the presented techniques in terms of performance and cost, pointing out the application-specific strength of each imaging method. (c) 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Kai Johnsson, Luc Reymond, Georgios Hatzopoulos, Aleksandar Salim
Suliana Manley, Giorgio Tortarolo