Pretraining boosts out-of-domain robustness for pose estimation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper, we trace the history of neural networks applied to natural language understanding tasks, and identify key contributions which the nature of language has made to the development of neural network architectures. We focus on the importance of v ...
We accurately reconstruct three-dimensional (3-D) refractive index (RI) distributions from highly ill-posed two-dimensional (2-D) measurements using a deep neural network (DNN). Strong distortions are introduced on reconstructions obtained by the Wolf tran ...
SAR and optical imagery provide highly complementary information about observed scenes. A combined use of these two modalities is thus desirable in many data fusion scenarios. However, any data fusion task requires measurements to be accurately aligned. Wh ...
We experimentally achieve a 19% capacity gain per Watt of electrical supply power in a 12-span link by eliminating gain flattening filters and optimizing launch powers using deep neural networks in a parallel fiber context. (C) 2020 The Authors ...
Classically, vision is seen as a cascade of local, feedforward computations. This framework has been tremendously successful, inspiring a wide range of ground-breaking findings in neuroscience and computer vision. Recently, feedforward Convolutional Neural ...
Combining different models is a widely used paradigm in machine learning applications. While the most common approach is to form an ensemble of models and average their individual predictions, this approach is often rendered infeasible by given resource co ...
The explosive growth of machine learning in the age of data has led to a new probabilistic and data-driven approach to solving very different types of problems. In this paper we study the feasibility of using such data-driven algorithms to solve classic ph ...
Existing techniques to encode spatial invariance within deep convolutional neural networks (CNNs) apply the same warping field to all the feature channels. This does not account for the fact that the individual feature channels can represent different sema ...
The ability to control a behavioral task or stimulate neural activity based on animal behavior in real-time is an important tool for experimental neuroscientists. Ideally, such tools are noninvasive, low-latency, and provide interfaces to trigger external ...
The ability to control a behavioral task or stimulate neural activity based on animal behavior in real-time is an important tool for experimental neuroscientists. Ideally, such tools are (1) noninvasive, (2) low-latency, and (3) provide interfaces to trigg ...