Cyclic permutationIn mathematics, and in particular in group theory, a cyclic permutation is a permutation consisting of a single cycle. In some cases, cyclic permutations are referred to as cycles; if a cyclic permutation has k elements, it may be called a k-cycle. Some authors widen this definition to include permutations with fixed points in addition to at most one non-trivial cycle. In cycle notation, cyclic permutations are denoted by the list of their elements enclosed with parentheses, in the order to which they are permuted.
Rubik's Cube groupThe Rubik's Cube group is a group that represents the structure of the Rubik's Cube mechanical puzzle. Each element of the set corresponds to a cube move, which is the effect of any sequence of rotations of the cube's faces. With this representation, not only can any cube move be represented, but any position of the cube as well, by detailing the cube moves required to rotate the solved cube into that position. Indeed with the solved position as a starting point, there is a one-to-one correspondence between each of the legal positions of the Rubik's Cube and the elements of .
Currency swapIn finance, a currency swap (more typically termed a cross-currency swap, XCS) is an interest rate derivative (IRD). In particular it is a linear IRD, and one of the most liquid benchmark products spanning multiple currencies simultaneously. It has pricing associations with interest rate swaps (IRSs), foreign exchange (FX) rates, and FX swaps (FXSs). A cross-currency swap's (XCS's) effective description is a derivative contract, agreed between two counterparties, which specifies the nature of an exchange of payments benchmarked against two interest rate indexes denominated in two different currencies.