**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Max-infinitely divisible models and inference for spatial extremes

Abstract

For many environmental processes, recent studies have shown that the dependence strength is decreasing when quantile levels increase. This implies that the popular max-stable models are inadequate to capture the rate of joint tail decay, and to estimate joint extremal probabilities beyond observed levels. We here develop a more flexible modeling framework based on the class of max-infinitely divisible processes, which extend max-stable processes while retaining dependence properties that are natural for maxima. We propose two parametric constructions for max-infinitely divisible models, which relax the max-stability property but remain close to some popular max-stable models obtained as special cases. The first model considers maxima over a finite, random number of independent observations, while the second model generalizes the spectral representation of max-stable processes. Inference is performed using a pairwise likelihood. We illustrate the benefits of our new modeling framework on Dutch wind gust maxima calculated over different time units. Results strongly suggest that our proposed models outperform other natural models, such as the Student-t copula process and its max-stable limit, even for large block sizes.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (17)

Related publications (35)

Related concepts (34)

Selected Topics on Discrete Choice

Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t

Selected Topics on Discrete Choice

Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Copula (probability theory)

In probability theory and statistics, a copula is a multivariate cumulative distribution function for which the marginal probability distribution of each variable is uniform on the interval [0, 1]. Copulas are used to describe/model the dependence (inter-correlation) between random variables. Their name, introduced by applied mathematician Abe Sklar in 1959, comes from the Latin for "link" or "tie", similar but unrelated to grammatical copulas in linguistics.

Random number generation

Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted better than by random chance is generated. This means that the particular outcome sequence will contain some patterns detectable in hindsight but unpredictable to foresight. True random number generators can be hardware random-number generators (HRNGs), wherein each generation is a function of the current value of a physical environment's attribute that is constantly changing in a manner that is practically impossible to model.

Quantile function

In probability and statistics, the quantile function outputs the value of a random variable such that its probability is less than or equal to an input probability value. Intuitively, the quantile function associates with a range at and below a probability input the likelihood that a random variable is realized in that range for some probability distribution. It is also called the percentile function (after the percentile), percent-point function or inverse cumulative distribution function (after the cumulative distribution function).

Michel Bierlaire, Timothy Michael Hillel, Janody Pougala

We propose a new modelling approach for daily activity scheduling which integrates the different daily scheduling choice dimensions (activity participation, location, schedule, duration and transportation mode) into a single optimisation problem. The funda ...

Modern digital connectivity has necessitated the creation of robust methods for securely storing and transferring data. At the heart of all security infrastructure is the random number generator (RNG). While random numbers find use in a variety of applicat ...

The goal of this paper is to characterize function distributions that general neural networks trained by descent algorithms (GD/SGD), can or cannot learn in polytime. The results are: (1) The paradigm of general neural networks trained by SGD is poly-time ...