Specular Manifold Sampling for Rendering High-Frequency Caustics and Glints
Related publications (37)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Physically-based rendering algorithms generate photorealistic images of virtual scenes. By simulating light paths in a scene, complex physical effects such as shadows, reflections and volumetric scattering can be reproduced. Over the last decade, physicall ...
We introduce a novel transmittance model to improve the volumetric representation of 3D scenes. The model can represent opaque surfaces in the volumetric light transport framework. Volumetric representations are useful for complex scenes, and become increa ...
Differentiable physically-based rendering has become an indispensable tool for solving inverse problems involving light. Most applications in this area jointly optimize a large set of scene parameters to minimize an objective function, in which case revers ...
A Bidirectional Scattering Distribution Function (BSDF) describes how light from each incident direction is scattered (reflected and transmitted) by a simple or composite surface, such as a window shade. Compact, tabular BSDFs may be derived via interpolat ...
Physically based rendering methods can create photorealistic images by simulating the propagation and interaction of light in a virtual scene. Given a scene description including the shape of objects, participating media, material properties, etc., the sim ...
The focus of our research is to generate controllable photo-realistic images of real-world scenes from existing observations, i.e., the inverse rendering problem. The approaches we focus on are those through neural rendering, utilizing neural network to de ...
Physically based rendering is a process for photorealistic digital image synthesis and one of the core problems in computer graphics. It involves simulating the light transport, i.e. the emission, propagation, and scattering of light through a virtual scen ...
Monte Carlo light transport simulations often lack robustness in scenes containing specular or near-specular materials. Widely used uni- and bidirectional sampling strategies tend to find light paths involving such materials with insufficient probability, ...
Path tracing is now the standard method used to generate realistic imagery in many domains, e.g., film, special effects, architecture etc. Path guiding has recently emerged as a powerful strategy to counter the notoriously long computation times required t ...
Realistic modeling of the bidirectional reflectance distribution function (BRDF) of scene objects is a vital prerequisite for any type of physically based rendering. In the last decades, the availability of databases containing real-world material measurem ...