Receptor-induced transient responses in cells with oscillatory actin dynamics
Related publications (38)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The lamellipod, the locomotory region of migratory cells, is shaped by the balance of protrusion and contraction. The latter is the result of myosin-generated centripetal flow of the viscoelastic actin network. Recently, quantitative flow data was obtained ...
Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone o ...
This paper provides a global picture of the bifurcation scenario of the Hindmarsh-Rose model. A combination between simulations and numerical continuations is used to unfold the complex bifurcation structure. The bifurcation analysis is carried out by vary ...
Protrusion of lamellipodia during cell migration depends on the assembly of actin network. The assembly mechanism, based on dendritic filament branching, has been investigated in reconstituted in vitro systems, but little is known about the dynamical and s ...
Actin assembly at the leading edge of the cell is believed to drive protrusion, whereas membrane resistance and contractile forces result in retrograde flow of the assembled actin network away from the edge. Thus, cell motion and shape changes are expected ...
Minimal nonlinear dynamic neuron models of the generic bifurcation type may provide the middle way between the detailed models favored by experimentalists and the simplified threshold and rate model of computational neuroscientists. This thesis investigate ...
The steady states of the Fenton–Karma, the Courtemanche and the Nygren cell models were studied by determining the fixed points of the dynamical system describing their cell kinetics. The linear stability of the fixed points was investigated, as well as th ...
Crawling cell motility is characteristic of most animal cells and is involved in many important biological processes such as embryogenesis, immune response, and wound healing. It involves several steps: protrusion (dynamic surface extension) at the front o ...
Changes in mechanical properties of the cytoplasm have been implicated in cell motility, but there is little information about these properties in specific regions of the cell at specific stages of the cell migration process. Fish epidermal keratocytes wit ...
Crawling motion is characteristic of most animal cells and is principally based on actin-myosin II cytoskeletal system. The major components and reactions contributing to motility have been identified, but the overall picture of how these molecular events ...