Phylogenetic comparative methodsPhylogenetic comparative methods (PCMs) use information on the historical relationships of lineages (phylogenies) to test evolutionary hypotheses. The comparative method has a long history in evolutionary biology; indeed, Charles Darwin used differences and similarities between species as a major source of evidence in The Origin of Species. However, the fact that closely related lineages share many traits and trait combinations as a result of the process of descent with modification means that lineages are not independent.
Molecular phylogeneticsMolecular phylogenetics (məˈlɛkjᵿlər_ˌfaɪloʊdʒəˈnɛtɪks,_mɒ-,_moʊ-) is the branch of phylogeny that analyzes genetic, hereditary molecular differences, predominantly in DNA sequences, to gain information on an organism's evolutionary relationships. From these analyses, it is possible to determine the processes by which diversity among species has been achieved. The result of a molecular phylogenetic analysis is expressed in a phylogenetic tree.
CalcareousCalcareous (kælˈkɛəriəs) is an adjective meaning "mostly or partly composed of calcium carbonate", in other words, containing lime or being chalky. The term is used in a wide variety of scientific disciplines. Calcareous is used as an adjectival term applied to anatomical structures which are made primarily of calcium carbonate, in animals such as gastropods, i.e., snails, specifically in relation to such structures as the operculum, the clausilium, and the love dart.
EndoskeletonAn endoskeleton (From Greek ἔνδον, éndon = "within", "inner" + σκελετός, skeletos = "skeleton") is an internal support structure of an animal, composed of mineralized tissue. An endoskeleton is a skeleton that is on the inside of a body, like humans, dogs, or some fish. The endoskeleton develops within the skin or in the deeper body tissues. The vertebrate endoskeleton is basically made up of two types of tissues (bone and cartilage). During early embryonic development the endoskeleton is composed of notochord and cartilage.
Sponge spiculeSpicules are structural elements found in most sponges. The meshing of many spicules serves as the sponge's skeleton and thus it provides structural support and potentially defense against predators. Sponge spicules are made of calcium carbonate or silica. Large spicules visible to the naked eye are referred to as megascleres, while smaller, microscopic ones are termed microscleres. The composition, size, and shape of spicules are major characters in sponge systematics and taxonomy.
PaleoceanographyPaleoceanography is the study of the history of the oceans in the geologic past with regard to circulation, chemistry, biology, geology and patterns of sedimentation and biological productivity. Paleoceanographic studies using environment models and different proxies enable the scientific community to assess the role of the oceanic processes in the global climate by the re-construction of past climate at various intervals. Paleoceanographic research is also intimately tied to paleoclimatology.
SpongeSponges, the members of the phylum Porifera (pəˈrɪfərə; meaning 'pore bearer'), are a basal animal clade as a sister of the diploblasts. They are multicellular organisms that have bodies full of pores and channels allowing water to circulate through them, consisting of jelly-like mesohyl sandwiched between two thin layers of cells. Sponges have unspecialized cells that can transform into other types and that often migrate between the main cell layers and the mesohyl in the process.
Tethys OceanThe Tethys Ocean ˈtiːθɪs,_ˈtɛθɪs (Τηθύς Tēthús), also called the Tethys Sea or the Neo-Tethys, was a prehistoric ocean during much of the Mesozoic Era and early Cenozoic Era, located between the ancient continents of Gondwana and Laurasia, before the opening of the Indian and Atlantic oceans during the Cretaceous Period. It was preceded by the Paleo-Tethys Ocean, which lasted between the Cambrian and the Early Triassic, while the Neotethys formed during the Late Triassic and lasted until the early Eocene (about 50 million years ago) when it completely closed.
TaphonomyTaphonomy is the study of how organisms decay and become fossilized or preserved in the paleontological record. The term taphonomy (from Greek táphos, τάφος 'burial' and nomos, νόμος 'law') was introduced to paleontology in 1940 by Soviet scientist Ivan Efremov to describe the study of the transition of remains, parts, or products of organisms from the biosphere to the lithosphere. The term taphomorph is used to describe fossil structures that represent poorly-preserved, deteriorated remains of a mixture of taxonomic groups, rather than of a single one.
CnidariaCnidaria (nᵻˈdɛəriə,_naɪ-) is a phylum under kingdom Animalia containing over 11,000 species of aquatic animals found both in freshwater and marine environments, predominantly the latter. Their distinguishing feature is cnidocytes, specialized cells that they use mainly for capturing prey. Their bodies consist of mesoglea, a non-living jelly-like substance, sandwiched between two layers of epithelium that are mostly one cell thick.