Cu/Metal Oxide Hybrid Nanocrystals as Electrocatalysts for the CO2 Reduction Reaction
Related publications (146)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The conversion of intermittent renewable energy resources in the form of chemical bond, such as hydrogen production from electrochemical water splitting, is a promising way to satisfy the future global energy demand and address the environmental issues. Th ...
The electrochemical CO2 reduction reaction (CO2RR) into valuable chemicals has the potential to realize a carbon-neutral energy cycle. Developing catalysts that can achieve high selectivity towards one of the possible reduction products is one of the bigge ...
Molecular surface functionalization of metallic catalysts is emerging as an ever-developing approach to tuning their catalytic performance. Here, we report the synthesis of hybrid catalysts comprising copper nanocrystals (CuNCs) and an imidazolium ligand f ...
The urgency of climate change demands the simultaneous removal of carbon dioxide from the atmosphere and the transition to renewable energy sources. This aim is realizable through electrochemical reduction of carbon dioxide (CO2RR), which is a promising ro ...
Among all CO2 electroreduction products, methane (CH4) and ethylene (C2H4) are two typical and valuable hydrocarbon products which are formed in two different pathways: hydrogenation and dimerization reactions of the same CO intermediate. Theoretical studi ...
Methane abatement pathways in Pd/Rh three-way catalysts have been investigated in three scales ranging from a vehicle application size catalyst, a model gas reactor and the catalyst in powder form. A special test rig was designed for the investigation of v ...
Zeolite-supported metal catalysts are widely employed in a number of chemical processes, and the stability of the catalytically active species is one of the most critical factors determining the reaction performance. A good example is the Pd/zeolite cataly ...
Supercritical water gasification (SCWG) is a promising and versatile technology for the conversion of a variety of wet biomass streams into renewable natural gas. In this work, the focus was set on methane production with the help of an active and stable m ...
The ability to tailor make materials with atomic scale precision is crucial for understanding the sensitivities of their performance parameters and for achieving the design specification corresponding to optimal device operation. Herein, this topic is disc ...
The electrochemical CO2 reduction reaction (CO2RR) has the potential to mitigate the rising CO2 levels while storing renewable energy in chemical bonds. Copper is the only single metal electrocatalyst producing high energy dense hydrocarbons, albeit into 1 ...