Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The metric dimension of a graph G is the minimal size of a subset R of vertices of G that, upon reporting their graph distance from a distinguished (source) vertex v⋆, enable unique identification of the source vertex v⋆ among all possible vertices of G. In this paper we show a Law of Large Numbers (LLN) for the metric dimension of some classes of trees: critical Galton–Watson trees conditioned to have size n, and growing general linear preferential attachment trees. The former class includes uniform random trees, the latter class includes Yule-trees (also called random recursive trees), m-ary increasing trees, binary search trees, and positive linear preferential attachment trees. In all these cases, we are able to identify the limiting constant in the LLN explicitly. Our result relies on the insight that the metric dimension can be related to subtree properties, and hence we can make use of the powerful fringe-tree literature developed by Aldous and Janson et al.
Amirkeivan Mohtashami, Dan Alistarh