**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Statistical limits of high-dimensional inference problems

Abstract

This thesis focuses on two kinds of statistical inference problems in signal processing and data science. The first problem is the estimation of a structured informative tensor from the observation of a noisy tensor in which it is buried. The structure comes from the possibility to decompose the informative tensor as the sum of a small number of rank-one tensors (small compared to its size). Such structure has applications in data science where data, organized into arrays, can often be explained by the interaction between a few features characteristic of the problem. The second problem is the estimation of a signal input to a feedforward neural network whose output is observed. It is relevant for many applications (phase retrieval, quantized signals) where the relation between the measurements and the quantities of interest is not linear.

We look at these two statistical models in different high-dimensional limits corresponding to situations where the amount of observations and size of the signal become infinitely large. These asymptotic regimes are motivated by the ever-increasing computational power and storage capacity that make possible the processing and handling of large data sets. We take an information-theoretic approach in order to establish fundamental statistical limits of estimation in high-dimensional regimes. In particular, the main contributions of this thesis are the proofs of exact formulas for the asymptotic normalized mutual information associated with these inference problems. These are low-dimensional variational formulas that can nonetheless capture the behavior of a large system where each component interacts with all the others. Owing to the relationship between mutual information and Bayesian inference, we use the solutions to these variational problems to rigorously predict the asymptotic minimum mean-square error (MMSE), the error achieved by the (Bayes) optimal estimator. We can thus compare algorithmic performances to the statistical limit given by the MMSE.

Variational formulas for the mutual information are referred to as replica symmetric (RS) ansätze due to the predictions of the heuristic replica method from statistical physics. In the past decade proofs of the validity of these predictions started to emerge. The general strategy is to show that the RS ansatz is both an upper and lower bound on the asymptotic normalized mutual information. The present work leverages on the adaptive interpolation method that proposes a unified way to prove the two bounds. We extend the adaptive interpolation to situations where the order parameter of the problem is not a scalar but a matrix, and to high-dimensional regimes that differ from the one for which the RS formula is usually conjectured. Our proofs also demonstrate the modularity of the method. Indeed, using statistical models previously studied in the literature as building blocks of more complex ones (e.g., estimated signal with a model of structure), we derive RS formulas for the normalized mutual information associated with estimation problems that are relevant to modern applications.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (19)

Related MOOCs (10)

Related publications (7)

Mutual information

In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the "amount of information" (in units such as shannons (bits), nats or hartleys) obtained about one random variable by observing the other random variable. The concept of mutual information is intimately linked to that of entropy of a random variable, a fundamental notion in information theory that quantifies the expected "amount of information" held in a random variable.

Statistical model

A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process. When referring specifically to probabilities, the corresponding term is probabilistic model. A statistical model is usually specified as a mathematical relationship between one or more random variables and other non-random variables.

Pointwise mutual information

In statistics, probability theory and information theory, pointwise mutual information (PMI), or point mutual information, is a measure of association. It compares the probability of two events occurring together to what this probability would be if the events were independent. PMI (especially in its positive pointwise mutual information variant) has been described as "one of the most important concepts in NLP", where it "draws on the intuition that the best way to weigh the association between two words is to ask how much more the two words co-occur in [a] corpus than we would have a priori expected them to appear by chance.

IoT Systems and Industrial Applications with Design Thinking

The first MOOC to provide a comprehensive introduction to Internet of Things (IoT) including the fundamental business aspects needed to define IoT related products.

Neuronal Dynamics - Computational Neuroscience of Single Neurons

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

Neuronal Dynamics - Computational Neuroscience of Single Neurons

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

xtreme value analysis is concerned with the modelling of extreme events such as floods and heatwaves, which can have large impacts. Statistical modelling can be useful to better assess risks even if,

This thesis is devoted to information-theoretic aspects of community detection. The importance of community detection is due to the massive amount of scientific data today that describes relationships

Claire Marianne Charlotte Capelo

The explosive growth of machine learning in the age of data has led to a new probabilistic and data-driven approach to solving very different types of problems. In this paper we study the feasibility

2020