Statistical limits of high-dimensional inference problems
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In inverse problems, the task is to reconstruct an unknown signal from its possibly noise-corrupted measurements. Penalized-likelihood-based estimation and Bayesian estimation are two powerful statistical paradigms for the resolution of such problems. They ...
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
In certain cases of astronomical data analysis, the meaningful physical quantity to extract is the ratio R between two data sets. Examples include the lensing ratio, the interloper rate in spectroscopic redshift samples, and the decay rate of gravitational ...
We present an extended validation of semi-analytical, semi-empirical covariance matrices for the two-point correlation function (2PCF) on simulated catalogs representative of luminous red galaxies (LRGs) data collected during the initial 2 months of operat ...
We introduce Tree-AMP, standing for Tree Approximate Message Passing, a python package for compositional inference in high-dimensional tree-structured models. The package provides a unifying framework to study several approximate message passing algorithms ...
A logconcave likelihood is as important to proper statistical inference as a convex cost function is important to variational optimization. Quantization is often disregarded when writing likelihood models, ignoring the limitations of the physical detectors ...
We study the problem of learning unknown parameters of stochastic dynamical models from data. Often, these models are high dimensional and contain several scales and complex structures. One is then interested in obtaining a reduced, coarse-grained descript ...
Satellite conjunctions involving "near misses" of space objects are becoming increasingly likely. One approach to risk analysis for them involves the computation of the collision probability, but this has been regarded as having some counterintuitive prope ...
We summarize what we consider to be the two main limitations of the "Estimands for Recurrent Event Endpoints in the Presence of a Terminal Event" (Schmidli et al. 2022). First, the authors did not give detailed guidance on how to choose an appropriate esti ...
In the Large Hadron Collider, the beam losses are continuously measured for machine protection. By design, most of the particle losses occur in the collimation system, where the particles with high oscilla-tion amplitudes or large momentum error are scrape ...