Publication

Optimization and Generalization of Shallow Neural Networks with Quadratic Activation Functions

Lenka Zdeborová
2020
Conference paper
Abstract

p>We study the dynamics of optimization and the generalization properties of one-hidden layer neural networks with quadratic activation function in the overparametrized regime where the layer width m is larger than the input dimension d. We consider a teacher-student scenario where the teacher has the same structure as the student with a hidden layer of smaller width m*<=m. We describe how the empirical loss landscape is affected by the number n of data samples and the width m* of the teacher network. In particular we determine how the probability that there be no spurious minima on the empirical loss depends on n, d, and m*, thereby establishing conditions under which the neural network can in principle recover the teacher. We also show that under the same conditions gradient descent dynamics on the empirical loss converges and leads to small generalization error, i.e. it enables recovery in practice. Finally we characterize the time-convergence rate of gradient descent in the limit of a large number of samples. These results are confirmed by numerical experiments.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.