Publication

Fast modeling of turbulent transport in fusion plasmas using neural networks

Abstract

We present an ultrafast neural network model, QLKNN, which predicts core tokamak transport heat and particle fluxes. QLKNN is a surrogate model based on a database of 3 × 108 flux calculations of the quasilinear gyrokinetic transport model, QuaLiKiz. The database covers a wide range of realistic tokamak core parameters. Physical features such as the existence of a critical gradient for the onset of turbulent transport were integrated into the neural network training methodology. We have coupled QLKNN to the tokamak modeling framework JINTRAC and rapid control-oriented tokamak transport solver RAPTOR. The coupled frameworks are demonstrated and validated through application to three JET shots covering a representative spread of H-mode operating space, predicting the turbulent transport of energy and particles in the plasma core. JINTRAC–QLKNN and RAPTOR–QLKNN are able to accurately reproduce JINTRAC–QuaLiKiz Ti,e and ne profiles, but 3–5 orders of magnitude faster. Simulations which take hours are reduced down to only a few tens of seconds. The discrepancy in the final source-driven predicted profiles between QLKNN and QuaLiKiz is on the order of 1%–15%. Also the dynamic behavior was well captured by QLKNN, with differences of only 4%–10% compared to JINTRAC–QuaLiKiz observed at mid-radius, for a study of density buildup following the L–H transition. Deployment of neural network surrogate models in multi-physics integrated tokamak modeling is a promising route toward enabling accurate and fast tokamak scenario optimization, uncertainty quantification, and control applications.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (33)
Magnetic confinement fusion
Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with inertial confinement fusion. The magnetic approach began in the 1940s and absorbed the majority of subsequent development. Fusion reactions combine light atomic nuclei such as hydrogen to form heavier ones such as helium, producing energy.
Plasma-facing material
In nuclear fusion power research, the plasma-facing material (or materials) (PFM) is any material used to construct the plasma-facing components (PFC), those components exposed to the plasma within which nuclear fusion occurs, and particularly the material used for the lining the first wall or divertor region of the reactor vessel. Plasma-facing materials for fusion reactor designs must support the overall steps for energy generation, these include: Generating heat through fusion, Capturing heat in the first wall, Transferring heat at a faster rate than capturing heat.
Fusion power
Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2023, no device has reached net power. Fusion processes require fuel and a confined environment with sufficient temperature, pressure, and confinement time to create a plasma in which fusion can occur.
Show more
Related publications (32)

Global fluid simulations of plasma turbulence in stellarators

António João Caeiro Heitor Coelho

In order to cope with the decarbonization challenge faced by many countries, fusion is one of the few alternatives to fossil fuels for the production of electricity. Two devices invented in the middle of the previous century have emerged as the most promis ...
EPFL2024

Model-based optimization of magnetic control in the TCV tokamak: design and experiments

Federico Pesamosca

Thermonuclear controlled fusion is a promising answer to the current energy and climate issues, providing a safe carbon-free source of energy which is virtually inexhaustible. In magnetic confinement thermonuclear fusion based on tokamak reactors, hydrogen ...
EPFL2021

Neural network surrogate of QuaLiKiz using JET experimental data to populate training space

Henri Weisen, Yann Camenen

Within integrated tokamak plasma modeling, turbulent transport codes are typically the computational bottleneck limiting their routine use outside of post-discharge analysis. Neural network (NN) surrogates have been used to accelerate these calculations wh ...
AMER INST PHYSICS2021
Show more
Related MOOCs (25)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.