Publication

In Via Accidit

Abstract

To share an event that happened or could have happen on the road in relation to architecture or space in a wider sense.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (23)
Binary relation
In mathematics, a binary relation associates elements of one set, called the domain, with elements of another set, called the codomain. A binary relation over sets X and Y is a new set of ordered pairs (x, y) consisting of elements x in X and y in Y. It is a generalization of the more widely understood idea of a unary function. It encodes the common concept of relation: an element x is related to an element y, if and only if the pair (x, y) belongs to the set of ordered pairs that defines the binary relation.
Finitary relation
In mathematics, a finitary relation over sets X1, ..., Xn is a subset of the Cartesian product X1 × ⋯ × Xn; that is, it is a set of n-tuples (x1, ..., xn) consisting of elements xi in Xi. Typically, the relation describes a possible connection between the elements of an n-tuple. For example, the relation "x is divisible by y and z" consists of the set of 3-tuples such that when substituted to x, y and z, respectively, make the sentence true. The non-negative integer n giving the number of "places" in the relation is called the arity, adicity or degree of the relation.
Reflexive relation
In mathematics, a binary relation R on a set X is reflexive if it relates every element of X to itself. An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations.
Show more
Related publications (77)

Succinct ordering and aggregation constraints in algebraic array theories

Viktor Kuncak, Rodrigo Raya

We discuss two extensions to a recently introduced theory of arrays, which are based on considerations coming from the model theory of power structures. First, we discuss how the ordering relation on the index set can be expressed succinctly by referring t ...
Elsevier Science Inc2024

Harmonic decomposition of the trace of 1D transfer matrices in layered media

Antonio Joaquin Garcia Suarez

The Transfer Matrix formalism is ubiquitous when it comes to study wave propagation in various stratified media, applications ranging from Seismology to Quantum Mechanics. A relation between variables at two points in two different layers can be establishe ...
2022

Transformations silencieuses : étude sur l'architecture alpine

Patrick Giromini

This thesis addresses the question of abandonment in architecture, not in its negative sense of desertion, but as a possibility offered to buildings which have lost their original purpose, which is to say those buildings from social and economic contexts w ...
EPFL2021
Show more
Related MOOCs (13)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.