Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
To assist the clinical diagnosis and treatment of speech dysarthria, automatic dysarthric speech detection techniques providing reliable and cost-effective assessment are indispensable. Based on clinical evidence on spectro-temporal distortions associated with dysarthric speech, we propose to automatically discriminate between healthy and dysarthric speakers exploiting spectro-temporal subspaces of speech. Spectro-temporal subspaces are extracted using singular value decomposition, and dysarthric speech detection is achieved by applying a subspace-based discriminant analysis. Experimental results on databases of healthy and dysarthric speakers for different languages and pathologies show that the proposed subspace-based approach using temporal subspaces is more advantageous than using spectral subspaces, also outperforming several state-of-the-art automatic dysarthric speech detection techniques.
Silvestro Micera, Emanuele Rossi