Publication

Systematic analysis of wavelet denoising methods for neural signal processing

Silvestro Micera
2020
Journal paper
Abstract

Objective. Among the different approaches for denoising neural signals, wavelet-based methods are widely used due to their ability to reduce in-band noise. All wavelet denoising algorithms have a common structure, but their effectiveness strongly depends on several implementation choices, including the mother wavelet, the decomposition level, the threshold definition, and the way it is applied (i.e. the thresholding). In this work, we investigated these factors to quantitatively assess their effects on neural signals in terms of noise reduction and morphology preservation, which are important when spike sorting is required downstream. Approach. Based on the spectral characteristics of the neural signal, according to the sampling rate of the signals, we considered two possible decomposition levels and identified the best-performing mother wavelet. Then, we compared different threshold estimation and thresholding methods and, for the best ones, we also evaluated their effect on clearing the approximation coefficients. The assessments were performed on synthetic signals that had been corrupted by different types of noise and on a murine peripheral nervous system dataset, both of which were sampled at about 16 kHz. The results were statistically analysed in terms of their Pearson's correlation coefficients, root-mean-square errors, and signal-to-noise ratios. Main results. As expected, the wavelet implementation choices greatly influenced the processing performance. Overall, the Haar wavelet with a five-level decomposition, hard thresholding method, and the threshold proposed by Han et al (2007) achieved the best outcomes. Based on the adopted performance metrics, wavelet denoising with these parametrizations outperformed conventional 300-3000 Hz linear bandpass filtering. Significance. These results can be used to guide the reasoned and accurate selection of wavelet denoising implementation choices in the context of neural signal processing, particularly when spike-morphology preservation is required.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.