Real-time feedback control of the impurity emission front in tokamak divertor plasmas
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Fusion occurs when light nuclei combine to form heavier nuclei. The energy released in this process powers the stars and can provide humankind with a safe, sustainable, and clean source of baseload electricity, a valuable tool in the fight against climate ...
A key challenge for the development of fusion reactors based on magnetic confinement, such as tokamaks and stellarators, is the control of the turbulent processes. The most prominent feature of turbulence in the Scrape-Off Layer (SOL), the volume between t ...
Tokamak devices aim to magnetically confine a hydrogen plasma at sufficiently high pressure to achieve net energy production from nuclear fusion of light isotopes. Predictive modeling and optimization is crucial for reliable operation of tokamak reactors, ...
Turbulence driven by small-scale instabilities results in strong heat and particle transport, which significantly shortens the confinement time and prevents the formation of a self-sustained plasma reaction in magnetic confinement devices. Control and poss ...
The performance of magnetic confinement fusion devices, such as tokamaks, is strongly correlated to the phenomena that occur in the boundary region of the plasma core that faces the wall of the device. The dominant cross-field transport mechanisms from the ...
Nuclear fusion presents a promising clean energy source to mitigate future energy crises, with magnetic confinement fusion well-positioned to provide a baseload scenario to power future reactors. The unmitigated power exhaust of such reactors threatens its ...
In order to cope with the decarbonization challenge faced by many countries, fusion is one of the few alternatives to fossil fuels for the production of electricity. Two devices invented in the middle of the previous century have emerged as the most promis ...
Thermonuclear fusion of light atoms is the primary energy source of stars, such as our Sun, that led to the emergence of life on Earth. However, its economic exploitation as a virtually unlimited and clean energy source is yet to be developed. One of the m ...
Numerical simulations explore a possible tightly baffled, long-legged divertor (TBLLD) concept in a future upgrade of the tokamak à configuration variable (TCV). The SOLPS-ITER code package is used to compare the exhaust performance of several TBLLD config ...
The overall performance of a tokamak strongly depends on phenomena that take place in a thin region between the main plasma and the vessel wall, which is denoted as tokamak boundary. In fact, the formation of transport barriers in this region can significa ...