Publication

Spin waves in the collinear antiferromagnetic phase of Mn5Si3

Jan Persson
2021
Journal paper
Abstract

By combining two independent approaches, inelastic neutron-scattering measurements and density-functionaltheory calculations, we study the spin waves in the collinear antiferromagnetic phase (AFM2) of Mn5Si3. We obtain its magnetic ground-state properties and electronic structure. This study allowed us to determine the dominant magnetic exchange interactions and magnetocrystalline anisotropy in the AFM2 phase of Mn5Si3. Moreover, the evolution of the spin excitation spectrum is investigated under the influence of an external magnetic field perpendicular to the anisotropy easy axis. The low-energy magnon modes show a different magnetic field dependence, which is a direct consequence of their different precessional nature. Finally, possible effects related to the Dzyaloshinskii-Moriya interaction are also considered.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.