Neural-network accelerated coupled core-pedestal simulations with self-consistent transport of impurities and compatible with ITER IMAS
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The tokamak à configuration variable (TCV) is unique in its ability to create a variety of plasma shapes and to heat the electron population in high density regimes using microwave power at the third harmonic of the electron cyclotron frequency. In the fra ...
The present work takes place within the general context of research related to the development of nuclear fusion energy. More specifically, this thesis is mainly a numerical and physical contribution to the understanding of turbulence and associated transp ...
Simulations of edge turbulence are particularly challenging due to the presence of large amplitude fluctuations and to the coupling of equilibrium and fluctuating scales. While validating edge simulations is necessary to assess the accuracy of our understa ...
The understanding and predictive capability of transport physics and plasma confinement is reviewed from the perspective of achieving reactor-scale burning plasmas in the ITER tokamak, for both core and edge plasma regions. Very considerable progress has b ...
Stable, high-performance operation of a tokamak requires several plasma control problems to be handled simultaneously. Moreover, the complex physics which governs the tokamak plasma evolution must be studied and understood to make correct choices in contro ...
The development of controlled thermonuclear fusion, a quasi-unlimited energy source suitable for large scale electricity production, is one of the main goals of plasma physics research. Among the directions explored to date, the use of toroidal devices cal ...
Understanding non-linearly coupled physics between plasma transport and free-boundary equilibrium evolution is essential to operating future tokamak devices, such as ITER and DEMO, in the advanced tokamak operation regimes. To study the non-linearly couple ...
Thermonuclear controlled fusion research is a highly active branch of plasma physics. The main goal is the production of energy from the fusion reaction of hydrogen isotope nuclei, the same reaction that powers stars. The most promising present approach ar ...
The ITER plasma control system has the same functional scope as the control systems in present tokamaks. These are plasma operation scenario sequencing, plasma basic control (magnetic and kinetic), plasma advanced control (control of RWMs, NTMs, ELMs, erro ...
Three-dimensional fluid simulations are performed in a simple magnetized toroidal plasma, in which vertical and toroidal magnetic fields create helicoidal magnetic field lines that terminate on the torus vessel. The simulations are carried out in the three ...