Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Two-dimensional (2D) materials are atomically thin crystals with exceptional mechanical, electrical and optical properties. Their unique characteristics originating from quantum confinement in the vertical dimension have attracted a strong interest for sci ...
Novel two-dimensional metamaterials, known as metasurfaces, have emerged as a breakthrough platform for controlling electromagnetic wave properties at the nanoscale. These metasurfaces consist of subwavelength nanoantennas or so-called meta-atoms, which ca ...
Recent advances in the field of metamaterials have shown that waves can be efficiently manipulated at the subwavelength scale through the interactions with an ensemble of resonant inclusions, opening new horizons in overcoming the size limits of devices wh ...
The pursuit of high-speed and on-chip optical communication systems has promoted extensive exploration of all-optical control of light-matter interactions via nonlinear optical processes. Here, we have numerically investigated the ultrafast dynamic switchi ...
Locally-resonant sonic metamaterials refer to synthetic acoustic matter composed of artificial acoustic “atoms”, generally passive, and of subwavelength sizes, that are capable of resonantly interacting with an external acoustic wave, and manipulate it in ...
Locally-resonant metamaterial crystals are artificial materials built from small spatially-local resonant inclusions arranged periodically at subwavelength scale. Unlike conventional continuous metamaterials, for which spatial dispersion originates mostly ...
Nonlinear processes are important in many fields of photonics ranging from biomedical imaging to ultrashort pulse generation. Progress in nanophotonics and metamaterials has created a growing demand for nanoscale nonlinear optical components. However, it i ...
The utilization of subwavelength resonators, such as small electric dipoles, plasmonic resonators, or objects made of materials with a high dielectric constant, has enabled the manipulation of electromagnetic fields down to the subwavelength regime with sy ...
III-nitride waveguides featuring AlInN claddings and GaN/AlGaN quantum wells (QWs) offer promising perspectives for applications in many fields of short-wavelength photonics. Thanks to their nearly lattice-matched nature, these structures exhibit an excell ...
Acoustic resonators play a key role in the development of subwavelength-sized technologies capable of interacting with airborne audible sound, from its emission and absorption to its manipulation and processing. Specifically, artificial acoustic media made ...