Publication

SIRT7 modulates the stability and activity of the renal K-Cl cotransporter KCC4 through deacetylation

Abstract

SIRT7 is a NAD(+)-dependent deacetylase that controls important aspects of metabolism, cancer, and bone formation. However, the molecular targets and functions of SIRT7 in the kidney are currently unknown. In silico analysis of kidney transcripts of the BXD murine genetic reference population revealed a positive correlation between Sirt7 and Slc12a7 mRNA expression, suggesting a link between the corresponding proteins that these transcripts encode, SIRT7, and the K-Cl cotransporter KCC4, respectively. Here, we find that protein levels and activity of heterologously expressed KCC4 are significantly modulated depending on its acetylation status in Xenopus laevis oocytes. Moreover, SIRT7 interacts with KCC4 in a NAD(+)-dependent manner and increases its stability and activity in HEK293 cells. Interestingly, metabolic acidosis increases SIRT7 expression in kidney, as occurs with KCC4. In contrast, total SIRT7-deficient mice present lower KCC4 expression and an exacerbated metabolic acidosis than wild-type mice during an ammonium chloride challenge. Altogether, our data suggest that SIRT7 interacts with, stabilizes and modulates KCC4 activity through deacetylation, and reveals a novel role for SIRT7 in renal physiology.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (33)
Histone acetylation and deacetylation
Histone acetylation and deacetylation are the processes by which the lysine residues within the N-terminal tail protruding from the histone core of the nucleosome are acetylated and deacetylated as part of gene regulation. Histone acetylation and deacetylation are essential parts of gene regulation. These reactions are typically catalysed by enzymes with "histone acetyltransferase" (HAT) or "histone deacetylase" (HDAC) activity. Acetylation is the process where an acetyl functional group is transferred from one molecule (in this case, acetyl coenzyme A) to another.
Histone deacetylase
Histone deacetylases (, HDAC) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on both histone and non-histone proteins. HDACs allow histones to wrap the DNA more tightly. This is important because DNA is wrapped around histones, and DNA expression is regulated by acetylation and de-acetylation. HDAC's action is opposite to that of histone acetyltransferase. HDAC proteins are now also called lysine deacetylases (KDAC), to describe their function rather than their target, which also includes non-histone proteins.
Histone deacetylase inhibitor
Histone deacetylase inhibitors (HDAC inhibitors, HDACi, HDIs) are chemical compounds that inhibit histone deacetylases. HDIs have a long history of use in psychiatry and neurology as mood stabilizers and anti-epileptics. More recently they are being investigated as possible treatments for cancers, parasitic and inflammatory diseases. To carry out gene expression, a cell must control the coiling and uncoiling of DNA around histones.
Show more
Related publications (35)

Autorepression of yeast Hsp70 cochaperones by intramolecular interactions involving their J-domains

Paolo De Los Rios, Pierre Goloubinoff, Satyam Tiwari, Mathieu Rebeaud, Bruno Claude Daniel Fauvet, Adélaïde Alice Mohr

The 70 kDa heat shock protein (Hsp70) chaperones control protein homeostasis in all ATP-containing cellular compartments. J-domain proteins (JDPs) coevolved with Hsp70s to trigger ATP hydrolysis and catalytically upload various substrate polypeptides in ne ...
Elsevier Science Inc2024

The effects of war on Ukrainian research

Gaétan Jean A de Rassenfosse, Wolf-Hendrik Peter Uhlbach, Tetiana Murovana

The ongoing war in Ukraine has profoundly impacted the Ukrainian scientific community. Numerous researchers have either emigrated or transitioned to alternate professions. For those who remain in research, the destruction of civil infrastructure and psycho ...
London2023

Class I histone deacetylases (HDAC1-3) are histone lysine delactylases

Carlos Moreno Yruela, Alexander Lund Nielsen, Di Zhang

Lysine L-lactylation [K(L-la)] is a newly discovered histone mark stimulated under conditions of high glycolysis, such as the Warburg effect. K(L-la) is associated with functions that are different from the widely studied histone acetylation. While K(L-la) ...
2022
Show more
Related MOOCs (12)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.