Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Advances in Automatic Speech Recognition (ASR) over the last decade opened new areas of speech-based automation such as in Air-Traffic Control (ATC) environments. Currently, voice communication and Controller Pilot Data Link Communications are the only way of contact between pilots and Air-Traffic Controllers (ATCo), where the former is the most widely used and the latter is a non-speech method mandatory for oceanic messages and limited for some domestically issues. ASR systems on ATCo environments inherit increasing complexity due to accents from non-English speakers, cockpit noise, speaker-dependent biases and small in-domain ATC databases for training. In this paper, we review the last advances related to ASR on ATCo communication. Then, we introduce CleanSky EC H2020 ATCO2, a project that aims to develop a platform to collect, organize and automatically pre-process ATCo data from air space. We apply transfer learning from out-of-domain corpus coupled with adaptation on seven command-related corpora. The acoustic modelling is based on conventional TDNN-HMMs trained using lattice-free MMI objective function. The developed ASR achieves relative improvement in word error rates of 29% when using transfer learning and an additional 36% when adapting the model with seven command-related databases, these results obtained from EC H2020 SESAR project MALORCA Vienna database.
Petr Motlicek, Juan Pablo Zuluaga Gomez, Amrutha Prasad
, ,