Automatic Speech Recognition Benchmark for Air-Traffic Communications
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This is the first book dedicated to uniting research related to speech and speaker recognition based on the recent advances in large margin and kernel methods. The first part of the book presents theoretical and practical foundations of large margin and ke ...
Speaker detection is an important component of a speech-based user interface. Audiovisual speaker detection, speech and speaker recognition or speech synthesis for example find multiple applications in human-computer interaction, multimedia content indexin ...
In this work, we propose different strategies for efficiently integrating an automated speech recognition module in the framework of a dialogue-based vocal system. The aim is the study of different ways leading to the improvement of the quality and robustn ...
In this paper we investigate the possibility of improving the speech recognition performance of meeting recordings by using slides captured during the recording process. The key hypothesis exploited in this work is that both slides and speech carry correla ...
Modern speech recognition has many ways of quantifying the misrecognitions a speech recognizer makes. The errors in modern speech recognition makes extensive use of the Levenshtein algorithm to find the distance between the labeled target and the recognize ...
In a previous paper on speech recognition, we showed that templates can better capture the dynamics of speech signal compared to parametric models such as hidden Markov models. The key point in template matching approaches is finding the most similar templ ...
In this paper, we investigate the possibility of enhancing state-of-the-art HMM-based speech recognition systems using data-driven techniques, where whole set of training utterances is used as reference models and recognition is then performed through the ...
In a previous paper on speech recognition, we showed that templates can better capture the dynamics of speech signal compared to parametric models such as hidden Markov models. The key point in template matching approaches is finding the most similar templ ...
In this paper, we investigate the possibility of enhancing state-of-the-art HMM-based speech recognition systems using data-driven techniques, where whole set of training utterances is used as reference models and recognition is then performed through the ...
Standard ASR systems typically use phoneme as the subword units. Preliminary studies have shown that the performance of the ASR system could be improved by using grapheme as additional subword units. In this paper, we investigate such a system where the wo ...