On the Effectiveness of Vision Transformers for Zero-shot Face Anti-Spoofing
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper, we use a hill-climbing attack algorithm based on Bayesian adaption to test the vulnerability of two face recognition systems to indirect attacks. The attacking technique uses the scores provided by the matcher to adapt a global distribution ...
We present a large scale database of images and captions, designed for supporting research on how to use captioned images from the Web for training visual classifiers. It consists of more than 125,000 images of celebrities from different fields downloaded ...
Detecting faces in images is a key step in numerous computer vision applications, such as face recognition or facial expression analysis. Automatic face detection is a difficult task because of the large face intra-class variability which is due to the imp ...
We present a large scale database of images and captions, designed for supporting research on how to use captioned images from the Web for training visual classifiers. It consists of more than 125,000 images of celebrities from different fields downloaded ...
When people interact to communicate, a very important role is played by the face. In fact, thanks to it we can get information about our interlocutors: who they are, what they feel, what their intentions are, etc. Studies demonstrated that facial expressio ...
The purpose of Face localization is to determine the coordinates of a face in a given image. It is a fundamental research area in computer vision because it serves, as a necessary first step, any face processing systems, such as automatic face recognition, ...
It has been previously demonstrated that systems based on local features and relatively complex statistical models, namely 1D Hidden Markov Models (HMMs) and pseudo-2D HMMs, are suitable for face recognition. Recently, a simpler statistical model, namely t ...
In much of the literature devoted to face recognition, experiments are performed with controlled images (e.g. manual face localization, controlled lighting, background and pose); however, a practical recognition system has to be robust to more challenging ...
The purpose of Face localization is to determine the coordinates of a face in a given image. It is a fundamental research area in computer vision because it serves, as a necessary first step, any face processing systems, such as automatic face recognition, ...
Detecting faces in images is a key step in numerous computer vision applications as face recognition for example. Face detection is a difficult task in image analysis because of the large face intra-class variability which is due to the important influence ...