Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Morphing attacks is a threat to biometric systems where the biometric reference in an identity document can be altered. This form of attack presents an important issue in applications relying on identity documents such as border security or access control. Research in face morphing attack detection is developing rapidly, however very few datasets with several forms of attacks are publicly available. This paper bridges this gap by providing a new dataset with four different types of morphing attacks, based on OpenCV, FaceMorpher, WebMorph and a generative adversarial network (Style-GAN), generated with original face images from three public face datasets. We also conduct extensive experiments to assess the vulnerability of the state-of-the-art face recognition systems, notably FaceNet, VGG-Face, and ArcFace. The experiments demonstrate that VGG-Face, while being less accurate face recognition system compared to FaceNet, is also less vulnerable to morphing attacks. Also, we observed that naı̈ve morphs generated with a StyleGAN do not pose a significant threat.
Touradj Ebrahimi, Yuhang Lu, Zewei Xu