**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# A fast spectral divide-and-conquer method for banded matrices

Abstract

Based on the spectral divide-and-conquer algorithm by Nakatsukasa and Higham [SIAM J. Sci. Comput., 35(3):A1325-A1349, 2013], we propose a new algorithm for computing all the eigenvalues and eigenvectors of a symmetric banded matrix with small bandwidth, with the eigenvectors given implicitly as a product of orthonormal matrices stored in the so-called hierarchically off-diagonal low-rank (HODLR) format. For this purpose, we combine our previous work on the fast computation of spectral projectors in the HODLR format, with a novel technique for extracting a basis for the range of such a HODLR matrix. Preliminary numerical experiments demonstrate that our algorithm exhibits quasi-linear complexity for matrices that can be efficiently represented in the HODLR format throughout the divide-and-conquer algorithm, and allows for conveniently dealing with such large-scale matrices.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (32)

Related publications (36)

Related MOOCs (19)

Eigendecomposition of a matrix

In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem. Eigenvalue, eigenvector and eigenspace A (nonzero) vector v of dimension N is an eigenvector of a square N × N matrix A if it satisfies a linear equation of the form for some scalar λ.

Sparse matrix

In numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which most of the elements are zero. There is no strict definition regarding the proportion of zero-value elements for a matrix to qualify as sparse but a common criterion is that the number of non-zero elements is roughly equal to the number of rows or columns. By contrast, if most of the elements are non-zero, the matrix is considered dense. The number of zero-valued elements divided by the total number of elements (e.

Fast Fourier transform

A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). Fourier analysis converts a signal from its original domain (often time or space) to a representation in the frequency domain and vice versa. The DFT is obtained by decomposing a sequence of values into components of different frequencies. This operation is useful in many fields, but computing it directly from the definition is often too slow to be practical.

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Ontological neighbourhood

David Atienza Alonso, Giovanni Ansaloni, Grégoire Axel Eggermann, Marco Antonio Rios

State-of-the-art Artificial Intelligence (AI) algorithms, such as graph neural networks and recommendation systems, require floating-point computation of very large matrix multiplications over sparse data. Their execution in resource-constrained scenarios, ...

2023,

This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov ...

Daniel Kressner, Stefano Massei, Alice Cortinovis

This work is concerned with approximating matrix functions for banded matrices, hierarchically semiseparable matrices, and related structures. We develop a new divide-and-conquer method based on (rational) Krylov subspace methods for performing low-rank up ...