Shrinking Scale Equidistribution for Monochromatic Random Waves on Compact Manifolds
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We consider total variation (TV) minimization for manifold-valued data. We propose a cyclic proximal point algorithm and a parallel proximal point algorithm to minimize TV functionals with l(p) -type data terms in the manifold case. These algorithms are ba ...
This paper presents a new framework for manifold learning based on a sequence of principal polynomials that capture the possibly nonlinear nature of the data. The proposed Principal Polynomial Analysis (PPA) generalizes PCA by modeling the directions of ma ...
When dealing with multi-angular image sequences, problems of reflectance changes due either to illumination and acquisition geometry, or to interactions with the atmosphere, naturally arise. These phenomena interplay with the scene and lead to a modificati ...
We propose a segmentation method based on the geometric representation of images as two-dimensional manifolds embedded in a higher dimensional space. The segmentation is formulated as a minimization problem, where the contours are described by a level set ...
Institute of Electrical and Electronics Engineers2014
Let Q be a Riemannian G-manifold. This paper is concerned with the symmetry reduction of Brownian motion in Q and ramifications thereof in a Hamiltonian context. Specializing to the case of polar actions, we discuss various versions of the stochastic Hamil ...
In this paper, we consider the problem of manifold approximation with affine subspaces. Our objective is to discover a set of low dimensional affine subspaces that represent manifold data accurately while preserving the manifold's structure. For this purpo ...
Numerous dimensionality reduction problems in data analysis involve the recovery of low-dimensional models or the learning of manifolds underlying sets of data. Many manifold learning methods require the estimation of the tangent space of the manifold at a ...
Manifold models provide low-dimensional representations that are useful for processing and analyzing data in a transformation-invariant way. In this paper, we study the problem of learning smooth pattern transformation manifolds from image sets that are ob ...
Institute of Electrical and Electronics Engineers2013
We prove upper bounds for Hecke-Laplace eigenfunctions on certain Riemannian manifolds X of arithmetic type, uniformly in the eigenvalue and the volume of the manifold. The manifolds under consideration are d-fold products of 2-spheres or 3-spheres, realiz ...
We consider a notion of balanced metrics for triples (X, L, E) which depend on a parameter alpha, where X is a smooth complex manifold with an ample line bundle L and E is a holomorphic vector bundle over X. For generic choice of alpha, we prove that the l ...