Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In this work, we present, analyze, and implement a class of Multi-Level Markov chain Monte Carlo (ML-MCMC) algorithms based on independent Metropolis-Hastings proposals for Bayesian inverse problems. In this context, the likelihood function involves solving a complex differential model, which is then approximated on a sequence of increasingly accurate discretizations. The key point of this algorithm is to construct highly coupled Markov chains together with the standard Multi-level Monte Carlo argument to obtain a better cost-tolerance complexity than a single-level MCMC algorithm. Our method extends the ideas of Dodwell, et al. "A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow," SIAM/ASA Journal on Uncertainty Quantification 3.1 (2015): 1075-1108, to a wider range of proposal distributions. We present a thorough convergence analysis of the ML-MCMC method proposed, and show, in particular, that (i) under some mild conditions on the (independent) proposals and the family of posteriors, there exists a unique invariant probability measure for the coupled chains generated by our method, and (ii) that such coupled chains are uniformly ergodic. We also generalize the cost-tolerance theorem of Dodwell et al., to our wider class of ML-MCMC algorithms. Finally, we propose a self-tuning continuation-type ML-MCMC algorithm (C-ML-MCMC). The presented method is tested on an array of academic examples, where some of our theoretical results are numerically verified. These numerical experiments evidence how our extended ML-MCMC method is robust when targeting some pathological posteriors, for which some of the previously proposed ML-MCMC algorithms fail.
Fabio Nobile, Juan Pablo Madrigal Cianci