Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We report on the fast production and weakly destructive detection of a Fermi gas with tunable interactions in a high finesse cavity. The cavity is used both with far off-resonant light to create a deep optical dipole trap, and with near-resonant light to reach the strong light-matter coupling regime. The cavity-based dipole trap allows for an efficient capture of laser-cooled atoms, and the use of a lattice-cancellation scheme makes it possible to perform efficient intra-cavity evaporative cooling. After transfer in a crossed optical dipole trap, we produce deeply degenerate unitary Fermi gases with up to 7 x 10(5) atoms inside the cavity, with an overall 2.85 s long sequence. The cavity is then probed with near-resonant light to perform five hundred-times repeated, dispersive measurements of the population of individual clouds, allowing for weakly destructive observations of slow atom-number variations over a single sample. This platform will make possible the real-time observation of transport and dynamics as well as the study of driven-dissipative, strongly correlated quantum matter.
Jean-Philippe Brantut, Timo Zwettler, Victor Youri Helson, Kevin Etienne Robert Roux, Hideki Konishi