MATHICSE Technical Report: Eigenfunction martingale estimating functions and filtered data for drift estimation of discretely observed multiscale
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this thesis we study stability from several viewpoints. After covering the practical importance, the rich history and the ever-growing list of manifestations of stability, we study the following. (i) (Statistical identification of stable dynamical syste ...
We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the ...
We study the problem of learning unknown parameters of stochastic dynamical models from data. Often, these models are high dimensional and contain several scales and complex structures. One is then interested in obtaining a reduced, coarse-grained descript ...
Inspired by Sibson’s alpha-mutual information, we introduce a new parametric class of universal predictors. This class interpolates two well-known predictors, the mixture estimator, that includes the Laplace and the Krichevsky-Trofimov predictors, and the ...
The aim of this paper is to define a nonlinear least squares estimator for the spectral parameters of a spherical autoregressive process of order 1 in a parametric setting. Furthermore, we investigate on its asymptotic properties, such as weak consistency ...
Functional time series is a temporally ordered sequence of not necessarily independent random curves. While the statistical analysis of such data has been traditionally carried out under the assumption of completely observed functional data, it may well ha ...
This thesis focuses on two kinds of statistical inference problems in signal processing and data science. The first problem is the estimation of a structured informative tensor from the observation of a noisy tensor in which it is buried. The structure com ...
We study the problem of drift estimation for two-scale continuous time series. We set ourselves in the framework of overdamped Langevin equations, for which a single-scale surrogate homogenized equation exists. In this setting, estimating the drift coeffic ...
Assessing the traversability of rugged terrain is a difficult challenge for legged robots, especially when they implement multiple, distinct gaits. We tackle this problem on the k-rock2 amphibious, sprawling gait robot by training a gait-dependent traversa ...
We develop theory and methodology for the problem of nonparametric registration of functional data that have been subjected to random deformation (warping) of their time scale. The separation of this phase variation ("horizontal" variation) from the amplit ...