MATHICSE Technical Report: Eigenfunction martingale estimating functions and filtered data for drift estimation of discretely observed multiscale
Related publications (60)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Real-data testing results of a real-time nonlinear freeway traffic state estimator are presented with a particular focus on its adaptive features. The pursued general approach to the real-time adaptive estimation of complete traffic state in freeway stretc ...
In this paper we present an optimal estimator of magnitude spectrum for speech enhancement when the clean speech DFT coefficients are modeled by a Laplacian distribution and the noise DFT coefficients are modeled by a Gaussian distribution. Chen has alread ...
We propose a novel statistical formulation of the image-reconstruction problem from noisy linear measurements. We derive an extended family of MAP estimators based on the theory of continuous-domain sparse stochastic processes. We highlight the crucial ro ...
Generalized Linear Models have become a commonly used tool of data analysis. Such models are used to fit regressions for univariate responses with normal, gamma, binomial or Poisson distribution. Maximum likelihood is generally applied as fitting method. I ...
Time series modeling and analysis is central to most financial and econometric data modeling. With increased globalization in trade, commerce and finance, national variables like gross domestic productivity (GDP) and unemployment rate, market variables lik ...
We propose a novel statistical formulation of the image-reconstruction problem from noisy linear measurements. We derive an extended family of MAP estimators based on the theory of continuous-domain sparse stochastic processes. We highlight the crucial rol ...
Compressed sensing (CS) deals with the reconstruction of sparse signals from a small number of linear measurements. One of the main challenges in CS is to find the support of a sparse signal from a set of noisy observations. In the CS literature, several i ...
Compressed sensing (CS) deals with the reconstruction of sparse signals from a small number of linear measurements. One of the main challenges in CS is to find the support of a sparse signal from a set of noisy observations. In the CS literature, several i ...
Top-k query processing is a fundamental building block for efficient ranking in a large number of applications. Efficiency is a central issue, especially for distributed settings, when the data is spread across different nodes in a network. This paper intr ...
in finite sample studies redescending M-estimators outperform bounded M-estimators (see for example, Andrews et al. [1972. Robust Estimates of Location. Princeton University Press, Princeton]). Even though redescenders arise naturally out of the maximum li ...