Publication

Cleaning Denial Constraint Violations through Relaxation

Abstract

Data cleaning is a time-consuming process that depends on the data analysis that users perform. Existing solutions treat data cleaning as a separate offline process that takes place before analysis begins. Applying data cleaning before analysis assumes a priori knowledge of the inconsistencies and the query workload, thereby requiring effort on understanding and cleaning the data that is unnecessary for the analysis. We propose an approach that performs probabilistic repair of denial constraint violations on-demand, driven by the exploratory analysis that users perform. We introduce Daisy, a system that seamlessly integrates data cleaning into the analysis by relaxing query results. Daisy executes analytical query-workloads over dirty data by weaving cleaning operators into the query plan. Our evaluation shows that Daisy adapts to the workload and outperforms traditional offline cleaning on both synthetic and real-world workloads.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.