Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We studied the segregation of single large intruder particles in monodisperse granular materials. Experiments were carried out in a two-dimensional shear cell using different intruder and media diameters, whose quotient defined a size ratio R that ranged from 1.2 to 3.333. When sheared, the intruders segregated and rotated at different rates, which depended on their R values and depth. The vertical intruder trajectories as a function of time were curved due to nonconstant depth-dependent segregation rates. An analysis that considered the lithostatic pressure distribution and a size ratio dependence was done to capture the trajectories and the general segregation rate behavior. As a result of a strain rate analysis, we observed a greater expansion rate around the intruders when R values were larger, which in turn promoted faster segregation. Experiments with large R values showed that intruder rotation was weak and local shear rates were low. In contrast, experiments with R closer to unity resulted in strong intruder rotation, high local shear rates, and contraction below the intruder. Therefore, an intruder with a diameter close to that of the medium was likely to segregate due to a rotation mechanism. We propose that large particle segregation depends on size ratio, local expansion rate, and, to a lesser extent, the local shear rate. Based on our observations we redefine large particle segregation as two well-defined processes dependent on R and the local strain rate.
Tomás Alfredo Trewhela Palacios
Philip Johannes Walter Moll, Maja Deborah Bachmann, Matthias Carsten Putzke, Chunyu Guo, Maarten Ruud van Delft, Joshua Alan Wolfe Straquadine