Pólya conjectureIn number theory, the Pólya conjecture (or Pólya's conjecture) stated that "most" (i.e., 50% or more) of the natural numbers less than any given number have an odd number of prime factors. The conjecture was set forth by the Hungarian mathematician George Pólya in 1919, and proved false in 1958 by C. Brian Haselgrove. Though mathematicians typically refer to this statement as the Pólya conjecture, Pólya never actually conjectured that the statement was true; rather, he showed that the truth of the statement would imply the Riemann hypothesis.
InstantonAn instanton (or pseudoparticle) is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. More precisely, it is a solution to the equations of motion of the classical field theory on a Euclidean spacetime. In such quantum theories, solutions to the equations of motion may be thought of as critical points of the action.
Mellin transformIn mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform. This integral transform is closely connected to the theory of Dirichlet series, and is often used in number theory, mathematical statistics, and the theory of asymptotic expansions; it is closely related to the Laplace transform and the Fourier transform, and the theory of the gamma function and allied special functions.
Mass gapIn quantum field theory, the mass gap is the difference in energy between the lowest energy state, the vacuum, and the next lowest energy state. The energy of the vacuum is zero by definition, and assuming that all energy states can be thought of as particles in plane-waves, the mass gap is the mass of the lightest particle. Since the energies of exact (i.e. nonperturbative) energy eigenstates are spread out and therefore they are not technically eigenstates, a more precise definition is that the mass gap is the greatest lower bound of the energy of any state which is orthogonal to the vacuum.
Classical and Quantum GravityClassical and Quantum Gravity is a peer-reviewed journal that covers all aspects of gravitational physics and the theory of spacetime. Its scope includes: Classical general relativity Applications of relativity Experimental gravitation Cosmology and the early universe Quantum gravity Supergravity, superstrings and supersymmetry Mathematical physics relevant to gravitation The editor-in-chief is Gabriela González at Louisiana State University. The 2018 impact factor is 3.487 according to Journal Citation Reports.
Minimal model programIn algebraic geometry, the minimal model program is part of the birational classification of algebraic varieties. Its goal is to construct a birational model of any complex projective variety which is as simple as possible. The subject has its origins in the classical birational geometry of surfaces studied by the Italian school, and is currently an active research area within algebraic geometry. The basic idea of the theory is to simplify the birational classification of varieties by finding, in each birational equivalence class, a variety which is "as simple as possible".
Inverse Laplace transformIn mathematics, the inverse Laplace transform of a function F(s) is the piecewise-continuous and exponentially-restricted real function f(t) which has the property: where denotes the Laplace transform. It can be proven that, if a function F(s) has the inverse Laplace transform f(t), then f(t) is uniquely determined (considering functions which differ from each other only on a point set having Lebesgue measure zero as the same). This result was first proven by Mathias Lerch in 1903 and is known as Lerch's theorem.
Beal conjectureThe Beal conjecture is the following conjecture in number theory: If where A, B, C, x, y, and z are positive integers with x, y, z ≥ 3, then A, B, and C have a common prime factor. Equivalently, The equation has no solutions in positive integers and pairwise coprime integers A, B, C if x, y, z ≥ 3. The conjecture was formulated in 1993 by Andrew Beal, a banker and amateur mathematician, while investigating generalizations of Fermat's Last Theorem. Since 1997, Beal has offered a monetary prize for a peer-reviewed proof of this conjecture or a counterexample.
Mellin inversion theoremIn mathematics, the Mellin inversion formula (named after Hjalmar Mellin) tells us conditions under which the inverse Mellin transform, or equivalently the inverse two-sided Laplace transform, are defined and recover the transformed function. If is analytic in the strip , and if it tends to zero uniformly as for any real value c between a and b, with its integral along such a line converging absolutely, then if we have that Conversely, suppose is piecewise continuous on the positive real numbers, taking a value halfway between the limit values at any jump discontinuities, and suppose the integral is absolutely convergent when .
Induced gravityInduced gravity (or emergent gravity) is an idea in quantum gravity that spacetime curvature and its dynamics emerge as a mean field approximation of underlying microscopic degrees of freedom, similar to the fluid mechanics approximation of Bose–Einstein condensates. The concept was originally proposed by Andrei Sakharov in 1967. Sakharov observed that many condensed matter systems give rise to emergent phenomena that are analogous to general relativity. For example, crystal defects can look like curvature and torsion in an Einstein–Cartan spacetime.