Automated Detection Of Highly Aggregated Neurons In Microscopic Images Of Macaque Brain
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Modern computing has enhanced our understanding of how social interactions shape collective behaviour in animal societies. Although analytical models dominate in studying collective behaviour, this study introduces a deep learning model to assess social in ...
Measuring bathymetry has always been a major scientific and technological challenge. In this work, we used a deep learning technique for inferring bathymetry from the depth-averaged velocity field. The training of the neural network is based on 5742 labora ...
Author summaryIn recent years, the application of deep learning represented a breakthrough in the mass spectrometry (MS) field by improving the assignment of the correct sequence of amino acids from observable MS spectra without prior knowledge, also known ...
Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
In this master thesis, multi-agent reinforcement learning is used to teach robots to build a self-supporting structure connecting two points. To accomplish this task, a physics simulator is first designed using linear programming. Then, the task of buildin ...
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
Magnetic resonance imaging (MRI) has been a valuable tool in investigating the pathological cascade of Alzheimer's disease (AD) and its progression, which are still open questions. Although some MRI-derived hallmarks in terms of functional connectivity and ...
Natural language processing and other artificial intelligence fields have witnessed impressive progress over the past decade. Although some of this progress is due to algorithmic advances in deep learning, the majority has arguably been enabled by scaling ...
Epilepsy is one of the most common neurological disorders that is characterized by recurrent and unpredictable seizures. Wearable systems can be used to detect the onset of a seizure and notify family members and emergency units for rescue. The majority of ...
Limited availability of representative time-to-failure (TTF) trajectories either limits the performance of deep learning (DL)-based approaches on remaining useful life (RUL) prediction in practice or even precludes their application. Generating synthetic d ...