**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Function Integration, Reconstruction And Approximation Using Rank-1 Lattices

Abstract

We consider rank-1 lattices for integration and reconstruction of functions with series expansion supported on a finite index set. We explore the connection between the periodic Fourier space and the non-periodic cosine space and Chebyshev space, via tent transform and then cosine transform, to transfer known results from the periodic setting into new insights for the non-periodic settings. Fast discrete cosine transform can be applied for the reconstruction phase. To reduce the size of the auxiliary index set in the associated component-by-component (CBC) construction for the lattice generating vectors, we work with a bi-orthonormal set of basis functions, leading to three methods for function reconstruction in the non-periodic settings. We provide new theory and efficient algorithmic strategies for the CBC construction. We also interpret our results in the context of general function approximation and discrete least-squares approximation.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (22)

Related publications (59)

Related concepts (37)

Ontological neighbourhood

Digital Signal Processing I

Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP

Digital Signal Processing II

Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization

Digital Signal Processing III

Advanced topics: this module covers real-time audio processing (with
examples on a hardware board), image processing and communication system design.

Discrete cosine transform

A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of cosine functions oscillating at different frequencies. The DCT, first proposed by Nasir Ahmed in 1972, is a widely used transformation technique in signal processing and data compression. It is used in most digital media, including (such as JPEG and HEIF), digital video (such as MPEG and H.26x), digital audio (such as Dolby Digital, MP3 and AAC), digital television (such as SDTV, HDTV and VOD), digital radio (such as AAC+ and DAB+), and speech coding (such as AAC-LD, Siren and Opus).

Fourier analysis

In mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.

Discrete Fourier transform

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies.

Till Junge, Ali Falsafi, Martin Ladecký

We generalize and provide a linear algebra-based perspective on a finite element (FE) ho-mogenization scheme, pioneered by Schneider et al. (2017)[1] and Leuschner and Fritzen (2018)[2]. The efficiency of the scheme is based on a preconditioned, well-scale ...

Martin Vetterli, Paul Hurley, Eric Bezzam, Sepand Kashani, Matthieu Martin Jean-André Simeoni

Fourier transforms are an often necessary component in many computational tasks, and can be computed efficiently through the fast Fourier transform (FFT) algorithm. However, many applications involve an underlying continuous signal, and a more natural choi ...

2022Laurent Villard, Stephan Brunner, Alberto Bottino, Moahan Murugappan

We introduce and derive the Fourier -enhanced 3D electrostatic field solver of the gyrokinetic full -f PIC code PICLS. The solver makes use of a Fourier representation in one periodic direction of the domain to make the solving of the system easily paralle ...