Publication

3D architecture and structural flexibility revealed in the subfamily of large glutamate dehydrogenases by a mycobacterial enzyme

Luciano Andres Abriata
2021
Journal paper
Abstract

Glutamate dehydrogenases (GDHs) are widespread metabolic enzymes that play key roles in nitrogen homeostasis. Large glutamate dehydrogenases composed of 180kDa subunits (L-GDHs(180)) contain long N- and C-terminal segments flanking the catalytic core. Despite the relevance of L-GDHs(180) in bacterial physiology, the lack of structural data for these enzymes has limited the progress of functional studies. Here we show that the mycobacterial L-GDH(180) (mL-GDH(180)) adopts a quaternary structure that is radically different from that of related low molecular weight enzymes. Intersubunit contacts in mL-GDH(180) involve a C-terminal domain that we propose as a new fold and a flexible N-terminal segment comprising ACT-like and PAS-type domains that could act as metabolic sensors for allosteric regulation. These findings uncover unique aspects of the structure-function relationship in the subfamily of L-GDHs. Lazaro et. al. report the first 3D structure of a large glutamate dehydrogenase (L-GDH), the one corresponding to the Mycobacterium smegmatis enzyme composed of 180kDa subunits (mL-GDH(180)), obtained by X-ray crystallography and cryo-electron microscopy. This structure reveals that mL-GDH(180) assembles as tetramers with the N- and C-terminal domains being involved in inter-subunit contacts and unveils unique features of the subfamily of L-GDHs.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.