Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We study the bending of a booklike system, comprising a stack of elastic plates coupled through friction. The behavior of this layered system is rich and nontrivial, with a nonadditive enhancement of the apparent stiffness and a significant hysteretic response. A dimension reduction procedure is employed to develop a centerline-based theory describing the stack as a nonlinear planar rod with internal shear. We consider the coupling between the nonlinear geometry and the elasticity of the stacked plates, treating the interlayer friction perturbatively. This model yields predictions for the stack’s mechanical response in three-point bending that are in excellent agreement with our experiments. Remarkably, we find that the energy dissipated during deformation can be rationalized over 3 orders of magnitude, including the regimes of a thick stack with large deflection. This robust dissipative mechanism could be harnessed to design new classes of low-cost and efficient damping devices.
Simon Nessim Henein, Florent Cosandier, Nicolas Blondiaux, Loïc Benoît Tissot-Daguette, Elias Sebastian Klauser, Florent Alexandre Boudoire, Nikola Kalentics, Lisa Salamin
Pierluigi Bruzzone, Kamil Sedlák, Roberto Guarino, Mithlesh Kumar
Congzhe Wang, Yun Sun, Yuqing Liu