Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Individual characterization of subjects based on their functional connectome (FC), termed “FC fingerprinting”, has become a highly sought-after goal in contemporary neuroscience research. Recent functional magnetic resonance imaging (fMRI) studies have demonstrated unique characterization and accurate identification of individuals as an accomplished task. However, FC fingerprinting in magnetoencephalography (MEG) data is still widely unexplored. Here, we study resting-state MEG data from the Human Connectome Project to assess the MEG FC fingerprinting and its relationship with several factors including amplitude- and phase-coupling functional connectivity measures, spatial leakage correction, frequency bands, and behavioral significance. To this end, we first employ two identification scoring methods, differential identifiability and success rate, to provide quantitative fingerprint scores for each FC measurement. Secondly, we explore the edgewise and nodal MEG fingerprinting patterns across the different frequency bands (delta, theta, alpha, beta, and gamma). Finally, we investigate the cross-modality fingerprinting patterns obtained from MEG and fMRI recordings from the same subjects. We assess the behavioral significance of FC across connectivity measures and imaging modalities using partial least square correlation analyses. Our results suggest that fingerprinting performance is heavily dependent on the functional connectivity measure, frequency band, identification scoring method, and spatial leakage correction. We report higher MEG fingerprinting performances in phase-coupling methods, central frequency bands (alpha and beta), and in the visual, frontoparietal, dorsal-attention, and default-mode networks. Furthermore, cross-modality comparisons reveal a certain degree of spatial concordance in fingerprinting patterns between the MEG and fMRI data, especially in the visual system. Finally, the multivariate correlation analyses show that MEG connectomes have strong behavioral significance, which however depends on the considered connectivity measure and temporal scale. This comprehensive, albeit preliminary investigation of MEG connectome test-retest identifiability offers a first characterization of MEG fingerprinting in relation to different methodological and electrophysiological factors and contributes to the understanding of fingerprinting cross-modal relationships. We hope that this first investigation will contribute to setting the grounds for MEG connectome identification.
Friedhelm Christoph Hummel, Takuya Morishita, Manon Chloé Durand-Ruel, Chang-Hyun Park, Maeva Moyne
João Pedro Forjaco Jorge, Patricia Figueiredo