Non-classical photon-phonon correlations at room temperature
Related publications (230)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Directional amplifiers are an important resource in quantum-information processing, as they protect sensitive quantum systems from excess noise. Here, we propose an implementation of phase-preserving and phase-sensitive directional amplifiers for microwave ...
The study of quantum matter has become a great part of modern physics research. Quantum criticality appears in the vicinity of a quantum critical point where there is an interplay between quantum and thermal fluctuations. In the quantum critical region, ’e ...
We prove polarization theorems for arbitrary classical-quantum (cq) channels. The input alphabet is endowed with an arbitrary Abelian group operation, and an Anion-style transformation is applied using this operation. It is shown that as the number of pola ...
Quantum mechanics did not only deeply transform our world view down to a philosophical level, it is also expected to be key ingredient of future so-called quantum technologies. Indeed, quantum properties of matter such as isolated single particles or entan ...
Mechanical oscillators are among the most important scientific tools in the modern physics. From the pioneering experiments in 18th by founding fathers of modern physics such as Newton, Hooke and Cavendish to the ground braking experiments in the 21th cent ...
Quantum computers enable a massive speed-up in calculations, thanks to the nature of quantum operations. To unlock quantum computation, a classical system infrastructure is required for the control of qubits and processing of their data. While qubits are g ...
A primary challenge in quantum science and technology is to isolate the fragile quantum states from their environment in order to prevent the irreversible leakage of energy and information which causes decoherence. In the late 1990s, however, a new paradig ...
A quantum computer fundamentally comprises a quantum processor and a classical controller. The classical electronic controller is used to correct and manipulate the qubits, the core components of a quantum processor. To enable quantum computers scalable to ...
The realization of a coherent interface between distant charge or spin qubits in semiconductor quantum dots is an open challenge for quantum information processing. Here, we demonstrate both resonant (real) and nonresonant (virtual) photon-mediated coheren ...
Methane dissociation on the step and terrace sites of a Pt(211) single crystal was studied by reflection absorption infrared spectroscopy (RAIRS) at a surface temperature of 120 K. The C−H stretch RAIRS signal of the chemisorbed methyl product species was ...