**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Complexity analysis of stochastic gradient methods for PDE-constrained optimal control problems with uncertain parameters

Abstract

We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected squared L2 misfit between the state (i.e. solution to the PDE) and a target function, subject to a regularization for well posedness. For the numerical treatment of this risk-averse Optimal Control Problem (OCP) we consider a Finite Element discretization of the underlying PDE, a Monte Carlo sampling method, and gradient-type iterations to obtain the approximate optimal control. We provide full error and complexity analyses of the proposed numerical schemes. In particular we investigate the complexity of a conjugate gradient method applied to the fully discretized OCP (so called Sample Average Approximation), in which the Finite Element discretization and Monte Carlo sample are chosen in advance and kept fixed over the iterations. This is compared with a Stochastic Gradient method on a fixed or varying Finite Element discretization, in which the expectation in the computation of the steepest descent direction is approximated by Monte Carlo estimators, independent across iterations, with small sample sizes. We show in particular that the second strategy results in an improved computational complexity. The theoretical error estimates and complexity results are confirmed by numerical experiments.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (9)

Related publications (2)

Related MOOCs (5)

Monte Carlo method

Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. They are often used in physical and mathematical problems and are most useful when it is difficult or impossible to use other approaches. Monte Carlo methods are mainly used in three problem classes: optimization, numerical integration, and generating draws from a probability distribution.

Numerical analysis

Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts.

Optimal control

Optimal control theory is a branch of mathematical optimization that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and operations research. For example, the dynamical system might be a spacecraft with controls corresponding to rocket thrusters, and the objective might be to reach the moon with minimum fuel expenditure.

Matlab & octave for beginners

Premiers pas dans MATLAB et Octave avec un regard vers le calcul scientifique

Matlab & octave for beginners

Premiers pas dans MATLAB et Octave avec un regard vers le calcul scientifique

MATLAB and Octave for Beginners

Learn MATLAB and Octave and start experimenting with matrix manipulations, data visualizations, functions and mathematical computations.

Fabio Nobile, Sebastian Krumscheid, Matthieu Claude Martin

We consider the numerical approximation of a risk-averse optimal control problem for an elliptic partial differential equation (PDE) with random coefficients. Specifically, the control function is a deterministic, dis- tributed forcing term that minimizes the expected mean squared distance between the state (i.e. solution to the PDE) and a target function, subject to a regularization for well posedness. For the numerical treatment of this risk-averse optimal control problem, we consider a Finite Element discretization of the underlying PDEs, a Monte Carlo sampling method, and gradient type iterations to obtain the approximate optimal control. We provide full error and complexity analysis of the proposed numerical schemes. In particular we compare the complexity of a fixed Monte Carlo gradient method, in which the Finite Element discretization and Monte Carlo sample are chosen initially and kept fixed over the gradient iterations, with a Stochastic Gradient method in which the expectation in the computation of the steepest descent direction is approximated by independent Monte Carlo estimators with small sample sizes and possibly varying Finite Element mesh sizes across iterations. We show in particular that the second strategy results in an improved computational complexity. The theoretical error estimates and complexity results are confirmed by our numerical experiments.

Fabio Nobile, Sebastian Krumscheid, Matthieu Claude Martin

We consider the numerical approximation of a risk-averse optimal control problem for an elliptic partial differential equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected mean squared distance between the state (i.e. solution to the PDE) and a target function, subject to a regularization for well posedness. For the numerical treatment of this risk-averse optimal control problem, we consider a Finite Element discretization of the underlying PDEs, a Monte Carlo sampling method, and gradient type iterations to obtain the approximate optimal control. We provide full error and complexity analysis of the proposed numerical schemes. In particular we compare the complexity of a fixed Monte Carlo gradient method, in which the Finite Element discretization and Monte Carlo sample are chosen initially and kept fixed over the gradient iterations, with a Stochastic Gradient method in which the expectation in the computation of the steepest descent direction is approximated by independent Monte Carlo estimators with small sample sizes and possibly varying Finite Element mesh sizes across iterations. We show in particular that the second strategy results in an improved computational complexity. The theoretical error estimates and complexity results are confirmed by our numerical experiments.