Magnetization Signature of Topological Surface States in a Non-Symmorphic Superconductor
Related publications (45)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Collective magnetic excitations are a fascinating aspect of condensed matter physics, where neutron scattering can provide valuable insight into the magnetic properties of physical realisations of model systems. This thesis focuses on the excitation spectr ...
The AC loss measurements of the high temperature superconductor (HTS) cable prototype in the EDIPO test facility motivated detailed investigations of the loss contributions from the tape, strand and cable stages of the HTS fusion conductor design proposed ...
We study the structural evolution of Sr3Ir2O7 as a function of pressure using x-ray diffraction. At a pressure of 54 GPa at room temperature, we observe a first-order structural phase transition, associated with a change from tetragonal to monoclinic symme ...
We report a study of the electrical transport properties of single crystals of Pr(4)Fe(2)As(2)Te(1-)xO(4), a recently discovered iron-based superconductor. Resistivity, Hall effect, and magnetoresistance are measured in a broad temperature range revealing ...
At ambient pressure, BiTeI exhibits a giant Rashba splitting of the bulk electronic bands. At low pressures, BiTeI undergoes a transition from trivial insulator to topological insulator. At still higher pressures, two structural transitions are known to oc ...
By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pa ...
When thinned down to the atomic scale, many layered van der Waals materials exhibit an interesting evolution of their electronic properties, whose main aspects can be accounted for by changes in the single-particle bandstructure. Phenomena driven by intera ...
It has recently been established that the high-transition-temperature (high-T-c) superconducting state coexists with short-range charge-density-wave order(1-11) and quenched disorder(12,13) arising from dopants and strain(14-17). This complex, multiscale p ...
The majority of interactions in solids strongly depend on the interatomic distances. The application of pressure changes the lattice parameters and modifies the electronic and the phononic energy spectra of a material avoiding some of the undesirable effec ...
The interplay of superconductivity and magnetism is investigated for systems with dimensions ranging from the mesoscopic to the atomic scale by scanning tunneling microscopy (STM) at millikelvin temperatures and by numerical calculations. Based on geometri ...