Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Fuzzing is a testing technique to discover unknown vulnerabilities in software. When applying fuzzing to libraries, the core idea of supplying random input remains unchanged, yet it is non-trivial to achieve good code coverage. Libraries cannot run as standalone programs, but instead are invoked through another application. Triggering code deep in a library remains challenging as specific sequences of API calls are required to build up the necessary state. Libraries are diverse and have unique interfaces that require unique fuzzers, so far written by a human analyst. To address this issue, we present FuzzGen, a tool for automatically synthesizing fuzzers for complex libraries in a given environment. FuzzGen leverages a whole system analysis to infer the library's interface and synthesizes fuzzers specifically for that library. FuzzGen requires no human interaction and can be applied to a wide range of libraries. Furthermore, the generated fuzzers leverage LibFuzzer to achieve better code coverage and expose bugs that reside deep in the library. FuzzGen was evaluated on Debian and the Android Open Source Project (AOSP) selecting 7 libraries to generate fuzzers. So far, we have found 17 previously unpatched vulnerabilities with 6 assigned CVEs. The generated fuzzers achieve an average of 54.94% code coverage; an improvement of 6.94% when compared to manually written fuzzers, demonstrating the effectiveness and generality of FuzzGen.
Mathias Josef Payer, Sirus Shahini
Mathias Josef Payer, Flavio Toffalini, Han Zheng, Yuqing Zhang, He Wang, Jiayuan Zhang